
International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 17

Managing Tombstones in Cassandra and Elastic Search

Mizbauddin Mohammad

Principal Software Engineer, Bentonville, AR, USA

mizba.md@gmail.com

Abstract-

This Article delves into advanced techniques for mitigating tombstones in Apache Cassandra

when ingesting large datasets of retail supplier master data, enabling efficient search

functionality through integration with Elasticsearch, this paper comprehensively explores the

detrimental impact of tombstones on read performance and storage efficiency, and routine a

multifaceted approach to minimize their creation and manage their lifecycle effectively.

Introduction

Managing large-scale, dynamic datasets in a retail environment presents unique challenges.

Apache Cassandra, with its high availability and scalability, caters well to write-intensive

workloads like ingesting and updating master data. However, its inherent design can lead to the

accumulation of “tombstones” markers for deleted data. While tombstones play a crucial role

in maintaining data consistency, their excessive presence can significantly hinder read

performance and storage efficiency, especially when combine with elastic search for full-text

search functionalities. This paper provides a comprehensive examination of advanced

strategies for minimizing tombstones in Cassandra while optimizing it for retail master data

and leveraging Elasticsearch for efficient search.

1. Understanding Tombstones and their Impact

Cassandra employs tombstones to track deleted data and ensure consistency across replicas.

When data is deleted, a tombstone is inserted with the corresponding deletion timestamp,

marking the data as unavailable for reads. While essential for historical accuracy, tombstones

become problematic when they accumulate in large quantities. This is because the system needs

to examine both live and tombstone data during read operations, leading to:

 Performance degradation: As the number of tombstones increases, read requests

require scanning a larger volume of data, impacting query response times significantly.

http://www.ijesat.com/
mailto:mizba.md@gmail.com

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 18

 Storage Inefficiency: Tombstones occupy storage space, even though they represent

non-existent data. This can lead to increased storage overhead and potentially higher

operational costs.

2. Advanced Techniques for Minimizing Tombstones

2.1 Data modeling and Schema Design:

 Partitioning Strategies: Carefully select a partitioning strategy that aligns with your

access patterns. Partitioning by frequently queried columns can minimize the number

of tombstones scanned during reads.

 Clustering Keys: Design clustering keys to group frequently accessed fata together,

reducing the need to scan through tombstones for unrelated data during reads.

 Denormalization: consider denormalizing data to reduce the need for joins and

eliminate the creation of tombstones in the joined tables. However, this approach should

be balanced with the potential drawbacks of increased data redundancy and consistency

maintenance challenges.

2.2 Advanced Deletion and Update Strategies:

 Tombstone Sweeping: Utilize Cassandra’s built-in tombstone sweeper tool to

periodically remove expired tombstones, improving read performance and reclaiming

storage space.

 Counter Columns: Employ counter columns for data that only needs to be incremented

or decremented. This eliminates the need for deletes and prevents tombstone creation.

However counter columns have limitations in terms of data types and querying

capabilities.

 Conditional Updates: Utilize Conditional Updates (lightweight transactions) to

perform updates only if certain conditions are met. This helps avoid unnecessary

deletions and tombstones creation, especially when dealing with frequently updated

data.

2.3 Compaction Strategies:

 Leveled compaction Strategy: This Strategy efficiently combines and discards

tombstones during compactions, reducing tgeir overall footprint.

 SizedTieredCompactionStrategy: This strategy prioritizes compacting data from

smaller, more frequently accessed sstables, which often contain higher concentration of

tombstones.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 19

 Custom Compaction Logic: Implement custom compaction logic to handle specifc

data access patterns and tailor tombstone handling strategies accordingly. This approach

requires advanced expertise and careful consideration to avoid unintended

consequences.

3. Integration with Elasticsearch for Efficient Search:

Elasticsearch excels at full-text search and can be integrated with Cassandra to offload search

functionalities. By indexing relevant data in Elasticsearch, users can perform efficient full-text

queries without directly encountering tombstones in Cassandra, However, it is crucial to

maintain data consistency between both systems to ensure accurate search results. Techniques

like periodic bulk updates or near real-time data synchronization can be employed for this

purpose.

4. Configuration:

 Interact indirectly with tombstone sweeper

o gc_grace_seconds : This setting defines the grace period for tombstones. Once

this time elapses, the tombstone is considered expired and eligible for removal

during the sweeping process.

o Compaction Strategy: Choosing the appropriate compaction strategyI (e.g.

LeveledCompactionStrategy) influences how tombstones are handling

during compaction cucles and ultimately removed.

5. Monitoring and Maintenance:

 Cassandra Monitoring Service (CMS): this tool offers various metrics related to

tombstones, including their count, ratios and types. You can track them to understand

effectiveness of your strategies.

 sstablemetadata tool: This tool allows you to analyze individual data

structures(sstables) and view details like tombstone count and their impact on storage

utilization.

 Custom Monitoring tools: You can develop custom tools or integrate existing

monitoring solutions to track tombstone metrics alongside other system performance

indicators.

 Compact Scheduling: Schedule Compactions at appropriate intervals to remove

expired tombstones and optimize storage utilization.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 20

 Performance Analysis: Analyze read and write performance metrics to assess the

effectiveness of your tombstone management strategies and identify areas for further

improvement.

Conclusion

By adopting a multifaceted approach that combines careful data modeling, advanced deletion

and update strategies efficient compact strategies and thoughtful integration with Elasticsearch,

Organizations can effectively manage tombstones in Cassandra while ingesting and managing

large volumes of master data. This approach ensures optimal performance for both reads and

writes, minimizes storage overhead, and facilitates efficient search functionalities with

Elasticsearch.

Reference Articles

1. Managing Tombstones in Apache Cassandra: https://www.instaclustr.com/support/

documentation/cassandra/cassandra-monitoring/tombstones-per-read/

2. Cassandra Query Language (CQL): SELECT statement: https://docs.datastax.com/en/

drivers/java/2.0/com/datastax/driver/core/TokenRange.html (This page mentions

tombstones in the context of filtering out deleted rows)

3. Cassandra, lists, and tombstones: https://jsravn.com/2015/05/13/cassandra-

tombstones-collections/

4. Clarification about Cassandra tombstones and manual

compaction: https://stackoverflow.com/questions/63660723/in-cassandra-are-

partition- tombstones-inherently-less-expensive-compared-to-row

5. Cassandra: The Definitive Guide (Second Edition) by Eric A. Brewer (Chapter 12: Data

Deletion and Tombstones)

6. Data Modeling for Cassandra by Sven Pedersen (Chapter 5: Tombstones and Garbage

Collection)

http://www.ijesat.com/
https://www.instaclustr.com/support/%20documentation/cassandra/cassandra-monitoring/tombstones-per-read/
https://www.instaclustr.com/support/%20documentation/cassandra/cassandra-monitoring/tombstones-per-read/
https://docs.datastax.com/en/%20drivers/java/2.0/com/datastax/driver/core/TokenRange.html
https://docs.datastax.com/en/%20drivers/java/2.0/com/datastax/driver/core/TokenRange.html
https://jsravn.com/2015/05/13/cassandra-tombstones-collections/
https://jsravn.com/2015/05/13/cassandra-tombstones-collections/
https://stackoverflow.com/questions/63660723/in-cassandra-are-partition-tombstones-inherently-less-expensive-compared-to-row
https://stackoverflow.com/questions/63660723/in-cassandra-are-partition-tombstones-inherently-less-expensive-compared-to-row

